Computational Aspects of Hyperelliptic Curve Cryptography

Michela Mazzoli

Institut für Mathematik
Alpen-Adria-Universität Klagenfurt

Torino, 22 Dicembre 2014
Alpen-Adria-Universität Klagenfurt, Austria
Motivation 1: DLP-based crypto

Alice and Bob want to exchange private messages over a public channel. They agree on a secret key with the following scheme:

1. let $G = \langle g \rangle$ be a cyclic group (publicly known)
2. Alice chooses an integer a and sends g^a to Bob
3. Bob chooses an integer b and sends g^b to Alice
4. Alice computes $(g^b)^a$
5. Bob computes $(g^a)^b$
6. the common secret key is g^{ab}

Security relies on the fact that it is hard to find b from g^a and g^{ab}. This is equivalent to solve the Discrete Logarithm Problem, and no polynomial-time algorithm for the DLP is known.
Motivation 2: pairing-based crypto

Let \((G_1, +)\) and \((G_2, \cdot)\) be cyclic groups of prime order \(q\).

A **pairing map** is \(\varepsilon : G_1 \times G_1 \rightarrow G_2\) such that

1. \(\varepsilon\) is bilinear: \(\varepsilon(aP, bQ) = \varepsilon(P, Q)^{ab}\) \(\forall a, b \in \mathbb{F}_q^*\) \(\forall P, Q \in G_1\)
2. \(\varepsilon\) is non-degenerative: \(P \neq 0 \Rightarrow \varepsilon(P, P) \neq 1\)
3. \(\varepsilon\) is efficiently computable
Motivation 2: pairing-based crypto

Let $(G_1, +)$ and (G_2, \cdot) be cyclic groups of prime order q. A pairing map is $\varepsilon : G_1 \times G_1 \rightarrow G_2$ such that

1. ε is bilinear: $\varepsilon(aP, bQ) = \varepsilon(P, Q)^{ab} \quad \forall a, b \in \mathbb{F}_q^* \quad \forall P, Q \in G_1$
2. ε is non-degenerate: $P \neq 0 \Rightarrow \varepsilon(P, P) \neq 1$
3. ε is efficiently computable

Weil pairing:

- G_1 is a subgroup of
 - the group of points of an elliptic curve over a finite field
 - the Jacobian of a hyperelliptic curve over a finite field
- G_2 is the group of the q-th roots of unity
One-round 3-party key exchange

Alice, Bob and Carl want to agree on a common secret key.

1. $G_1 = \langle P \rangle$ and G_2 cyclic groups; pairing $\varepsilon : G_1 \times G_1 \rightarrow G_2$ (publicly known)

2. personal secret keys: a, b, c

3. Alice sends aP to Bob and Carl

4. Bob sends bP to Alice and Carl

5. Carl sends cP to Alice and Bob

6. Alice computes $\varepsilon(bP, cP)^a$

7. Bob computes $\varepsilon(aP, cP)^b$

8. Carl computes $\varepsilon(aP, bP)^c$

9. the common secret key is $\varepsilon(P, P)^{abc}$

Security relies on the Bilinear Diffie-Hellman assumption: it is hard to find $\varepsilon(P, P)^{abc}$ given P, aP, bP, cP.
State of the art

- **Elliptic curve cryptography (ECC):**
 - proposed independently by Koblitz and Miller in 1985
 - extensively studied
 - standardised cryptographic protocols
 - commercial applications

- **Hyperelliptic curve cryptography (HECC):**
 - proposed by Koblitz in 1989
 - still under (theoretical) investigation
 - no real-world applications yet

- **Pairing-based cryptography:**
 - initially used for cryptanalysis against supersingular elliptic curves (MOV attack, 1993; Frey-Rück attack, 1994)
 - rediscovered for “good” use by Joux in 2000, and Boneh-Franklin in 2001
State of the art

- Elliptic curve cryptography (ECC):
 - proposed independently by Koblitz and Miller in 1985
 - extensively studied
 - standardised cryptographic protocols
 - commercial applications

- Hyperelliptic curve cryptography (HECC):
 - proposed by Koblitz in 1989
 - still under (theoretical) investigation
 - no real-world applications yet
State of the art

▶ Elliptic curve cryptography (ECC):
 • proposed independently by Koblitz and Miller in 1985
 • extensively studied
 • standardised cryptographic protocols
 • commercial applications

▶ Hyperelliptic curve cryptography (HECC):
 • proposed by Koblitz in 1989
 • still under (theoretical) investigation
 • no real-world applications yet

▶ Pairing-based cryptography:
 • initially used for cryptanalisis against supersingular elliptic curves (MOV attack, 1993; Frey-Rück attack, 1994)
 • rediscovered for “good” use by Joux in 2000, and Boneh-Franklin in 2001
Hyperelliptic curves

Let \mathbb{F}_q be a finite field with $q = p^n$ elements. A hyperelliptic curve H/\mathbb{F}_q of genus $g \geq 1$ is a non-singular algebraic curve

$$y^2 + h(x)y = f(x)$$

where

- $h(x), f(x) \in \mathbb{F}_q[x]$
- $f(x)$ is monic
- $\deg(f) = 2g + 1$
- $\deg(h) \leq g$

H has only one point at infinity $\infty = [0 : 1 : 0]$

For $g = 1$, H is an elliptic curve.
Arithmetic on elliptic curves

We can define the sum of points of H with the chord-tangent rule:

$H(\mathbb{F}_q)$ is a finite Abelian group, with neutral element ∞.
Divisors of a hyperelliptic curve

A divisor is a formal finite sum of points of H:

$$D = \sum_{i=1}^{d} m_i P_i \quad \text{with} \quad m_i \in \mathbb{Z}, \quad \deg(D) = \sum_{i=1}^{d} m_i$$

The set of divisors of H is an additive group.

A principal divisor is

$$\text{div}(F) = \sum_{P \in H} \text{ord}_F(P) P - \left(\sum_{P \in H} \text{ord}_F(P) \right) \infty$$

for any rational function $F(x, y)$ on H.

Let Div^0 be the subgroup of divisors of degree 0 and \mathcal{P} the subgroup of principal divisors.

The Jacobian of H is $J = \text{Div}^0 / \mathcal{P}$.
Canonical representation of divisor classes

If we consider only divisors fixed by the Galois group of \mathbb{F}_q, then the Jacobian $J(\mathbb{F}_q)$ is a finite Abelian group.

Every divisor class of $J(\mathbb{F}_q)$ can be represented by a unique pair of polynomials $a(x), b(x) \in \mathbb{F}_q[x]$ s.t.

- $a(x)$ is monic
- $\deg(b) < \deg(a) \leq g$
- $a(x) \mid b(x)^2 + h(x)b(x) - f(x)$

Addition in $J(\mathbb{F}_q)$ can be performed via polynomial arithmetic [Cantor’s algorithm, 1987]:

- $D_1 + D_2 \approx 17g^2 + O(g)$ field operations
- $2D \approx 16g^2 + O(g)$ field operations
Security requirements

There are some security requirements for $J(\mathbb{F}_q)$ to be suitable for cryptographic applications:

- $g < 4$
- H must be not supersingular (except for pairing-based crypto)
- $|J(\mathbb{F}_q)|$ must have a large prime factor
- other conditions on $|J(\mathbb{F}_q)|$ to be resistant to all known attacks.

H/\mathbb{F}_q is supersingular if there are no divisors of order p in $J(\mathbb{F}_{q^m})$ for any $m \geq 1$.
Computational problems

1. divisor class counting, i.e. find the order of $J(\mathbb{F}_q)$

2. supersingularity criteria

3. scalar multiplication, i.e. compute $nD = D + \cdots + D$ for $n \in \mathbb{Z}$, $D \in J(\mathbb{F}_q)$ in an efficient way

4. pairing computation
Frobenius endomorphism

The Frobenius endomorphism of H/\mathbb{F}_q is

$$\tau(x, y) = (x^q, y^q)$$

and has characteristic polynomial

$$\chi(x) = x^{2g} + a_1 x^{2g-1} + \cdots + a_g x^g + a_{g-1} q x^{g-1} + \cdots + a_1 q^{g-1} x + q^g$$

Important: $|J(\mathbb{F}_q)| = \chi(1)$

$\chi(x)$ can be found by counting points on H:

$$M_k = |H(\mathbb{F}_{q^k})|$$

$$a_k = \frac{1}{k} \left(M_k - q^k - 1 + \sum_{i=1}^{k-1} (M_{k-i} - q^{k-i} - 1) a_i \right)$$
Point counting on elliptic curves - I

\[E / \mathbb{F}_q : y^2 = f(x). \] By Hasse theorem:

\[| |E(\mathbb{F}_q)| - q - 1| \leq 2\sqrt{q} \]

Frobenius characteristic polynomial: \(\chi(x) = x^2 + a_1 x + q \)

\[|E(\mathbb{F}_q)| = q + 1 - a_1 \]
\[|a_1| \leq 2\sqrt{q} \]

Finding \(|E(\mathbb{F}_q)| \) is equivalent to find \(a_1 \)

Naive approach: compute the Legendre symbols

\[|a_1| = \sum_{x \in \mathbb{F}_q} \left(\frac{f(x)}{q} \right) \]

It takes \(O(q \log q) \) \(\sim \) exponential!
Point counting on elliptic curves - II

Schoof’s algorithm [1985]:

1. compute a_1 modulo p for many small primes p such that $\prod p \geq 4\sqrt{q}$
2. find a_1 with the Chinese Remainder Theorem
Schoof’s algorithm [1985]:

1. compute a_1 modulo p for many small primes p such that $\prod p \geq 4\sqrt{q}$
2. find a_1 with the Chinese Remainder Theorem

- can compute $|E(\mathbb{F}_q)|$ in deterministic polynomial time $O(\log^8 q)$
- SEA algorithm: restrict the set of primes $\rightarrow O(\log^4 q)$ probabilistic
 (e.g. SEA is implemented in PARI/GP)
- there exist (in theory) polynomial-time SEA-like algorithms for hyperelliptic curves, but they are difficult to implement
- there is a practical algorithm only for $g = 2$ [Gaudry-Harley 2000]
Supersingularity

Point counting on hyperelliptic curves is important
- to find Frobenius characteristic polynomial \(\chi(x) \)
- to determine the order of the Jacobian \(|J(\mathbb{F}_q)| \)
Supersingularity

Point counting on hyperelliptic curves is important

- to find Frobenius characteristic polynomial $\chi(x)$
- to determine the order of the Jacobian $|J(\mathbb{F}_q)|$

...but also to tell whether a curve is supersingular or not.

Stichtenoth-Xing criterion [1995]:

$$H/\mathbb{F}_q \text{ supersingular} \iff a_k \equiv 0 \mod p^\left\lfloor \frac{kn}{2} \right\rfloor \forall k = 1 \ldots g$$

(a_1, \ldots, a_g are the coefficients of $\chi(x)$ and $q = p^n$)
Scalar multiplication - I

\(H/\mathbb{F}_q \) and \(D \in J(\mathbb{F}_{q^m}) \), compute \(nD \) for \(n \in \mathbb{Z}, \ n > 0 \)

Standard method: use binary expansion of \(n \)

\[
n = \sum_{i=0}^{L} d_i 2^i, \quad d_i \in \{0, 1\}
\]

\[
nD = d_0 D + 2(d_1 D + 2(d_2 D + \cdots + d_L D))
\]

\# divisor doublings \(\approx \) length of the expansion
\# divisor additions \(\approx \) weight of the expansion
Scalar multiplication - II

\(\tau(x, y) = (x^q, y^q) \) induces an endomorphism on \(J(\mathbb{F}_{q^m}) \):

\[\tau([a(x), b(x)]) = \left[a^{(q)}(x), b^{(q)}(x) \right] \]

which requires at most \(2g \) \(q \)-th powers (i.e. cyclic shifts) in \(\mathbb{F}_{q^m} \)

Idea: represent integers to the basis \(\tau \)

\[n = \sum_{i=0}^{L} d_i \tau^i \]

\[nD = d_0 D + \tau(d_1 D + \tau(d_2 D + \cdots + d_L D)) \]

evaluations of \(\tau \approx \) length of the expansion
divisor additions \(\approx \) weight of the expansion
plus some precomputation (\(d_i D \))
Scalar multiplication - III

Improvements:

- reduce the number of divisor additions by using a w-NAF expansion, i.e. in every block of w consecutive digits there is at most one non-zero digit
- reduce the precomputation effort by means of symmetric digit sets.

Questions:

- existence of a finite τ-adic expansion for every integer?
- average weight of the expansion?
- length of the expansion?
- practical recoding algorithm?
Grazie per l’attenzione!